Brief information about the project

Name of the project	AP09058404 «Establishing patterns of radon distribution in
	environmental objects to study the risks of cancer through
	spectroradiometric monitoring» (0121PK00201)
Relevance	Most people are most exposed to radon in residential buildings and
	industrial premises; since the radon-222 isotope gives
	approximately 50–55% of the radiation dose that every inhabitant
	of the Earth receives annually from natural radionuclides, the
	radon-220 isotope adds another $\sim 5-10\%$. When inhaled, radon
	isotopes saturate the body's cells and the intercellular space with
	daughter decay products. Radon can damage the DNA of the
	respiratory epithelium, and it is assumed that exposure to radon is
	the cause of lung cancer. Thus, research in this direction is an
	urgent problem.
Purpose	Investigation of the dynamics of accumulation of radon isotopes
	and their daughter decay products (DDP) in the human body,
	objects of the anthropogenic environment, and, on this basis, the
	calculation of the risks of cancer incidence in various cohorts of
	the population and in different living conditions when performing
	monitoring measurements of the topologies of the distribution of
	radon isotope activity and their DDP.
Objectives	To achieve the aim of the project it is necessary to solve the
	Tollowing tasks:
	- To develop methods for measuring the topology of distribution
	over biological objects and the numan body of local zones of
	background radiation using modern electronic radiometers, solid-
	state track detectors and spectrometric devices for registering
	Monitor the topology of the distribution of radon isotopes in a
	- Monitor the topology of the distribution of fadoil isotopes in a
	multi-day and seasonal variations in the emanation of radon
	isotopes to calculate the doses received from natural sources of
	radiation.
	- To simulate oncoradiation damage to biological objects by
	radon isotopes on alpha-particle beams to determine the
	sensitivity threshold of modern electronic radiometers solid-state
	track detectors and a device for registering terrestrial beta-
	radionuclides.
	- To reveal the patterns of distribution of isotopes of radon and its
	daughter decay products in the human body depending on
	anthropogenic characteristics (gender, age, height and weight
	characteristics, floor of residence);
	– To reveal the patterns of distribution of isotopes of radon and its
	daughter decay products in the human body, depending on the
	distance of residence to the tectonic fault.
	- To study the dynamics of the accumulation of isotopes of radon
	and its daughter decay products in the human body, objects of the
	anthropogenic environment and its impact on cancer morbidity in
	the population.
	- To develop a radiobiophysical model of the distributions of
	alpha, beta and gamma background over biological objects and

	Nuclei. – 2021. – Vol. 84, Issue 11. – P. 1929-1934.
	https://doi.org/10.1134/S1063778821090118 (Q4, Percentile-16)
	2. Zaripova Y.A., Gladkih T.M., Bigeldiyeva M.T., Dyachkov
	V.V., Yushkov A.V. Application of the medical linear accelerator
	ELEKTA AXESSE in the study of sorption properties of
	impurities and absorption coefficients of medium and heavy
	chemical elements // Journal of Physics: Conference Series. –
	2022. – Vol. 2155. – 012029. DOI: 10.1088/1742-
	6596/2155/1/012029 (Percentile –22)
	3. Zaripova Y., Dyachkov V., Gladkikh T., Bigeldiyeva M., Nasr
	Ahmed Nasr Diab Investigation of gamma radiation shielding
	features for modified structural materials for nuclear energy and
	nuclear medicine // Nuclear Technology & Radiation Protection.
	– 2023. – Vol. XXXVIII. No. 2. – P. 108-115.
	https://doi.org/10.2298/NTRP2302108Z (03. Percentile – 39)
	4. Zaripova Y., Dvachkov V., Bigeldiveva M., Gladkikh T.,
	Yushkov A. Preliminary Survey of Exposure to Indoor Radon in
	al-Farabi Kazakh National University, Kazakhstan // Atmosphere.
	-2023 - Vol 14 Issue 10 - 1584
	https://doi.org/10.3390/atmos14101584 (03. Percentile –69)
	5 Zaripova V Dvachkov V Bigeldiveva M et al The activity
	of ²¹⁰ Ph in cigarette smoked in Kazakhstan Radiat Environ
	Biophys. $-$ 2023. (O3. Percentile -55)
	https://doi.org/10.1007/s00411-023-01048-x
	6. Zaripova Y.A., Gladkikh T.M., Bigeldiveva M.T., Dvachkov
	V V Yushkov A V Method for measuring linear gamma
	radiation absorption coefficients at the ELEKTA AXESSE
	medical accelerator beam // Reports Of The National Academy Of
	Sciences Of The Republic Of Kazakhstan $= 2021 = \text{Vol} 5$ No
	$339 = P_{126-135} DOI: https://doi.org/10.32014/2021.2518-$
	1/82 01
	7 Zarinova V A Dyachkov V V Bigaldiyaya M T Cladkikh
	T. M. Vuchkov A.V. Quantitative estimation of the concentration
	of netural alpha radionualidas in the lungs // Benerts Of The
	National Academy Of Sciences Of The Depublic Of Karakhetan
	National Academy Of Sciences Of The Republic Of Kazakhstan.
	-2021 V01. 0, INO. 340 P. 28-35. D01:
D. ((<u>nttps://doi.org/10.32014/2021.2518-1483.10/</u>
Patents	1. Zaripova Y.A., Dyachkov V.V., Bigeldieva M.T.,
	Dyusebaeva K.S., Yushkov A.V. Methods for measuring the
	topology of the distribution of local zones of background radiation
	// Author's certificate No. 37354 (date of creation: 06.16.2023),
	issued June 21, 2023, Republic of Kazakhstan. (in Russian)